

Contents
 Shell Intro

 Command Format

 Shell I/O

 Command I/O

 Command Overview

Shell Intro
 A system program that allows a user to execute:

 shell functions (internal commands)

 other programs (external commands)

 shell scripts

 Linux/UNIX has a bunch of them, the most common are
 tcsh, an expanded version of csh (Bill Joy, Berkley, Sun)

 bash, one of the most popular and rich in functionality shells, an
expansion of sh (AT&T Bell Labs)

 ksh, Korn Shell

 zhs

 ...

Command Format
 Format: command name and 0 or more arguments:
% commandname [arg1] ... [argN]

 By % sign I mean prompt here and hereafter.

 Arguments can be

 options (switches to the command to indicate a mode of
operation) ; usually prefixed with a hyphen (-) or two (--)
in GNU style

 non-options, or operands, basically the data to work with
(actual data, or a file name)

Shell I/O
 Shell is a “power-user” interface, so the user interacts with

the shell by typing in the commands.

 The shell interprets the commands, that may produce some
results, they go back to the user and the control is given
back to the user when a command completes (in general).

 In the case of external commands, shell executes actual
programs that may call functions of the OS kernel.

 These system commands are often wrapped around a so-
called system calls, to ask the kernel to perform an
operation (usually privileged) on your behalf.

Command I/O
 Input to shell:

 Command name and arguments typed by the user

 Input to a command:
 Keyboard, file, or other commands

 Standard input: keyboard.
 Standard output: screen.
 These STDIN and STDOUT are often together referred to as a

terminal.
 Both standard input and standard output can be redirected from/to a

file or other command.
 File redirection:

 < input
 > output
 >> output append

man
 Manual Pages

 The first command to remember

 Contains info about almost everything :-)

 other commands

 system calls

 c/library functions

 other utils, applications, configuration files

 To read about man itself type:
% man man

 NOTE: unfortunately there’s no
% man woman ...

which
 Displays a path name of a command.

 Searches a path environmental variable for the
command and displays the absolute path.

 To find which tcsh and bash are actually in use,
type:
% which tcsh
% which bash

 % man which for more details

chsh
 Change Login Shell

 Login shell is the shell that interprets commands after
you logged in by default.

 You can change it with chsh (provided that your
system admin allowed you to do so).

 To list all possible shells, depending on
implementation:
% chsh -l

% cat /etc/shells

 % chsh with no arguments will prompt you for the
shell.

whereis
 Display all locations of a command (or some other

binary, man page, or a source file).

 Searchers all directories to find commands that match
whereis’ argument

 % whereis tcsh

passwd
 Change your login password.

 A very good idea after you got a new one.

 It’s usually a paranoid program asking your password to
have at least 6 chars in the password, at least two
alphabetical and one numerical characters. Some other
restrictions (e.g. dictionary words or previous password
similarity) may apply.

 Depending on a privilege, one can change user’s and group
passwords as well as real name, login shell, etc.

 % man passwd

date
 Guess what :-)

 Displays dates in various formats

 % date

 % date -u

 in GMT

 % man date

cal
 Calendar

 for month

 entire year

 Years range: 1 - 9999

 No year 0

 Calendar was corrected
in 1752 - removed 11
days

 % cal current month

 % cal 2 2000 Feb 2000, leap year

 % cal 2 2100 not a leap year

 % cal 2 2400 leap year

 % cal 9 1752 11 days skipped

 % cal 0 error

 % cal 2002 whole year

clear
 Clears the screen

 There’s an alias for it: Ctrl+L

 Example sequence:

 % cal

 % clear

 % cal

 Ctrl+L

sleep
 “Sleeping” is doing nothing for some time.

 Usually used for delays in shell scripts.

 % sleep 2 2 seconds pause

Command Grouping
 Semicolon: “;”

 Often grouping acts as if it were a single command, so
an output of different commands can be redirected to
a file:

 % (date; cal; date) > out.txt

alias
 Defined a new name for a command

 % alias

 with no arguments lists currently active aliases

 % alias newcommand oldcommand

 defines a newcommand

 % alias cl cal 2003

 % cl

unalias
 Removes alias

 Requires an argument.

 % unalias cl

history
 Display a history of

recently used commands

 % history

 all commands in the history

 % history 10

 last 10

 % history -r 10

 reverse order

 % !!

 repeat last command

 % !n

 repeat command n in the
history

 % !-1
 repeat last command = !!

 % !-2

 repeat second last command

 % !ca

 repeat last command that
begins with ‘ca’

apropos
 Search man pages for a

substring.

 % apropos word

 Equivalent:

 % man -k word

 % apropos date

 % man -k date

 % apropos password

exit / logout
 Exit from your login session.

 % exit

 % logout

shutdown
 Causes system to shutdown or reboot cleanly.

 May require superuser privileges

 % shutdown -h now - stop

 % shutdown -r now - reboot

ls
 List directory contents

 Has whole bunch of
options, see man ls for
details.

 % ls

 all files except those starting
with a “.”

 % ls -a

 all

 % ls -A

 all without “.” and “..”

 % ls -F

 append “/” to dirs and “*” to
executables

 % ls -l

 long format

 % ls -al

 % ls -lt

 sort by modification time
(latest - earliest)

 % ls -ltr

 reverse

cat
 Display and concatenate files.

 % cat

 Will read from STDIN and print to STDOT every line you enter.

 % cat file1 [file2] ...

 Will concatenate all files in one and print them to STDOUT

 % cat > filename

 Will take whatever you type from STDIN and will put it into the file
filename

 To exit cat or cat > filename type Ctrl+D to indicate
EOF (End of File).

more / less
 Pagers to display contents of large files page by page or

scroll line by line up and down.

 Have a lot of viewing options and search capability.

 Interactive. To exit: ‘q’

less
 less ("less is more") a bit more smart than the more

command
 to display contents of a file:

 % less filename

 To display line numbers:
 % less -N filename

 To display a prompt:
 % less -P"Press 'q' to quit" filename

 Combine the two:
 % less -NP"Blah-blah-blah" filename

 For more information:
 % man less

touch
 By touching a file you either create it if it did not exists

(with 0 length).

 Or you update it’s last modification and access times.

 There are options to override the default behavior.

 % touch file

 % man touch

cp
 Copies files / directories.

 % cp [options] <source> <destination>

 % cp file1 file2

 % cp file1 [file2] … /directory

 Useful option: -i to prevent overwriting existing files
and prompt the user to confirm.

mv
 Moves or renames files/directories.

 % mv <source> <destination>

 The <source> gets removed

 % mv file1 dir/

 % mv file1 file2

 rename

 % mv file1 file2 dir/

 % mv dir1 dir2

rm
 Removes file(s) and/or directories.

 % rm file1 [file2] ...

 % rm -r dir1 [dir2] ...

 % rm -r file1 dir1 dir2 file4 ...

script
 Writes a log (a typescript) of whatever happened

in the terminal to a file.

 % script [file]

 % script

 all log is saved into a file named typescript

 % script file

 all log is saved into a file named file

 To exit logging, type:
 % exit

find
 Looks up a file in a directory tree.

 % find . -name name

 % find . \(-name ‘w*’ -or -name ‘W*’ \)

mkdir
 Creates a directory.

 % mkdir newdir

 Often people make an alias of md for it.

cd
 Changes your current directory to a new one.

 % cd /some/other/dir

 Absolute path

 % cd subdir

 Assuming subdir is in the current directory.

 % cd

 Returns you to your home directory.

pwd
 Displays personal working directory, i.e. your current

directory.

 % pwd

rmdir
 Removes a directory.

 % rmdir dirname

 Equivalent:

 % rm -r dirname

ln
 Symbolic link or a “shortcut” in M$ terminology.

 % ln –s <real-name> <fake-name>

chmod
 Changes file permissions

 Possible invocations
 % chmod 600 filename

 -rw------- 1 user group 2785 Feb 8 14:18 filename
(a bit not intuitive where 600 comes from)

 % chmod u+rw filename

(the same thing, more readable)

 For the assignment:
 % chmod u+x myshellscript

(mysshellscript is now executable)

 -rwx------ 1 user group 2785 Feb 8 14:18 myshellscript

grep
 Searches its input for a pattern.

 The pattern can be a simple substring or a complex regular
expression.

 If a line matches, it’s directed to STDOUT; otherwise, it’s
discarded.

 % echo “blah-foo” | grep blah

 Will print the matching line

 % echo “blah-foo” | grep zee

 Will not.

 See a separate grep tutorial.

Pipes
 What's a pipe?

 is a method of interprocess communication (IPC)

 in shells a '|' symbol used

 it means that the output of one program (on one side of
a pipe) serves as an input for the program on another
end.

 a set of "piped" commands is often called a pipeline

 Why it's useful?
 Because by combining simple OS utilities one can easily

solve more complex tasks

